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Abstract

A time accurate numerical study is presented of an over-expanded Mach 2 circular turbulent jet in which
the flow is assumed axisymmetric. The focus of this investigation is on the jet screech phenomenon resulting
from the interaction between the large-scale turbulent mixing region instabilities and the regular spacing of
the shock wave-expansion system, (shock cells), in the over-expanded jet. The solution is obtained of the
‘‘short’’ time-dependent Reynolds averaged Navier–Stokes equations (TRANS), using a two-equation,
k–o; turbulence model. The time accurate method was first calibrated for the given model geometry when
the flow was fully expanded, and the resulting mean flow characteristics were compared with experimental
data. The results were in broad agreement for the first 10 diameters of the jet downstream of the exit.
Further downstream the time-averaged axial velocity decayed at a slightly faster rate than in the
experiments. In an ideal inviscid fully expanded jet no shock cells would be present but in the turbulent jet
calculations weak shock cells appeared which gradually died out beyond about 10 diameters from the
nozzle exit. The calculated non-dimensional time-averaged transverse velocity profiles showed self-
similarity, when allowance was made for the false origin of the shear layer, in agreement with the measured
results.

In the calculations for the over-expanded jet it was found, in agreement with experimental data, that the
interaction between shock cell modulated instability waves and the shock-expansion system generated jet
screech. It was found, as part of the screech phenomenon, that the shocks and the shock cells oscillated over
a small distance which increased from the axis to a maximum within the shear layer. This shock
unsteadiness resulted in the shocks being smeared when viewed in the equivalent steady flow calculations.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Research motivation

Reducing noise and vibration from supersonic round jets while maintaining thrust performance
is a current interest among high-speed flow researchers. The activity is aimed towards the
conceptual design of mixer–ejector configurations [1] that enhance aircraft performance
while reducing the noise emissions below the legal limits. The specific research on high-speed
turbulent jets is likely to have a main impact on the next generation supersonic civil aircraft.
Seiner et al. [2] reported that enhanced jet mixing is obtained when jet plume perturbations occur
close to the nozzle lip, such as when the nozzle is operated off its design pressure ratio. The
radiated noise is also significantly increased at this flow regime and further efforts in noise source
prediction and control are required to reduce the noise footprint from aircraft using high-speed jet
engines.

In this study the flow unsteadiness and noise production of an over-expanded model jet are
investigated by a numerical approach. The approach aims to reproduce the essential flow
dynamics in the early stages of the jet plume development, where large-scale motion in the shear
layer interacts with shock cells and produces screech noise. At certain flow regimes
screech dominates the acoustic radiation in the upstream direction [3]. This study aims to
reproduce the important physics of such noise production. Convectively amplifying velocity
waves are captured in time advancing numerical predictions, showing the existence of a
dominant or fundamental instability mode. The velocity and vorticity unsteadiness combine to
give an unsteady ‘‘hydrodynamic’’ pressure field that is further detailed. The levels of pressure
amplitude predicted are well above what would be obtained from a fully expanded jet of
equivalent thrust.

1.2. Background

An over-expanded jet is obtained from a supersonic nozzle operated below its design pressure
ratio. A schematic of the jet flow is presented in Fig. 1. An unsteady shear layer is shed from the
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Fig. 1. Schematic of an over-expanded jet.
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nozzle lip in which large-scale vortical structures are embedded. These flow instabilities originate
from the nozzle lip and develop as convectively amplifying velocity and vorticity waves. The shear
layer inflected velocity profile supports this Kelvin–Helmholtz instability that is the driving
physics of the aerodynamic unsteadiness. The shear flow bounds a high-speed flow core where a
quasi-spatially periodic sequence of compressions and expansions form a shock cell structure.
Aerodynamic pressure fluctuations and noise radiation are also characteristic features of the
unsteady flow.

Phase coherence in the flow instability produces dominant modes, known as screech modes
after Powell [4], and the flow instability interaction with the shock cell system generates resonance.
Measurements [2,3,5] for a Mach 2 supersonic nozzle jet are reviewed in Seiner [6]. A review by
Raman [7,8] covers sonic nozzle screech and more complex nozzle geometries. The details of the
instability mode interaction at a shock are reported by Westley and Woolley [9] and by Panda
[10,11]. These time-dependent jet screech schlieren flow visualizations show large-scale vortical
structures interacting with the shock cells and generating screech. These large-scale vortical
structures are distinct from the random fine scale turbulence in the mixing region. There is thus
scope in attempting a time-dependent numerical model of the flow in which the large-scale flow
structure is resolved in time while the effects of turbulence are accounted for by a turbulence
closure model. This is the approach followed in this study to further a better understanding of the
physics and prediction of screech.

Important aspects of the time mean flow, such as shear layer growth, flow entrainment, shock
cell geometry, are affected by the jet unsteadiness. Panda [11] provided time accurate
measurements of an induced shock cell motion in the under-expanded jet regime. The present
numerical study relates to over-expanded jet shock cell fluctuations. The numerical method
attempts to resolve the combined effects of the orderly large-scale instabilities and shock
oscillation on the mean jet geometry. The time-dependent approach better describes the flow
physics than the steady flow analytical method of Pack [12]. It offers also a better stand point to
develop screech noise prediction methods.

Phase-averaged measurements by Panda [10] confirm that the shock fluctuation mainly
occurs in the vicinity of the convecting vortical waves in the shear layer. The shock tip position
in the vicinity of the shear layer displaces mainly in the streamwise direction and tends to
follow the convection of the vortex cores. The magnitude of the aerodynamic pressure fluctuation
is of concern, since it can dominate over the acoustic one in the neighbourhood of the jet
plume. This aerodynamic or ‘‘hydrodynamic’’ pressure fluctuation is localized in the jet plume and
would not be detected in far-field acoustic measurements where screech noise is dominant.
The intense tonal pressure can affect the aircraft structure integrity, as documented by Hay and
Rose [13].

The characteristics of jet noise when screech is present is well documented in the literature
(e.g., Refs. [7,8]). The source of jet screech noise is described by Powell [4] as the interaction
of the convected shear layer instabilities with the shock cells in jet plume. The details of such
interaction and of its self-sustained feedback have been the subject of investigation over the
past 40 years, yet the reliable prediction of screech amplitude remains an open challenge [7,8].
Further advances are sought in the modelling of the driving flow instability, the jet screech
noise sources and shear layer receptivity. The present work focuses on predicting the flow
unsteadiness.
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2. Flow conditions

A fully expanded Mach 2 air jet issues from a 49:89 mm exit diameter ðDeÞ supersonic round
nozzle when operated at the design pressure ratio ps=pN ¼ 7:824: The computational model
nozzle lip is 0:18De thick. The flow at exit is axial and cold, the stagnation temperature is
293:06 K: The selected exit and ambient flow conditions closely match the measured settings by
Seiner et al. [2]. The exit static temperature, pressure, density and axial velocity are, respectively,
162:81 K; 101:32 kN=m2; 2:168 kg=m3 and 511:5 m=s: The Reynolds number Re; based on the jet
exit diameter, is 5 � 106: Ambient conditions are 101:32 kN=m2; 288:15 K and 0 m=s for pressure,
temperature and velocity.

Reducing the nozzle pressure ratio to ps=pN ¼ 3:601 at the same ambient conditions generates
an over-expanded jet. The stagnation temperature of the axial exit flow is 293:06 K: At this regime
the corresponding exit plane values are 162:78 K; 46:632 kN=m2; 0:9981 kg=m3; 511:5 m=s; and
Re ¼ 2:3 � 106: The jet fully expanded Mach number Mj is 1.49.

3. Numerical method

3.1. Governing equations

The mass, momentum and energy conservation in the axisymmetric flow is governed by the
Navier–Stokes equations. A suitable averaging for these equations is considered that is tailored to
the unsteady jet flow.

Time-dependent jet screech measurements by Westley and Woolley [9] and Panda [10] show
large-scale instabilities developing over a background of random fluctuations, the small-scale
turbulence. The instabilities originate from the nozzle lip and are the growing eigenmodes of the
shear layer. Indeed, Tam and Hu [14] showed that an appropriate modelling of the instability
initial growth is by considering small shear layer perturbations, based on hydrodynamic
instability theory. Tam and Hu’s result indicates that the excitation of these Kelvin–Helmholtz
type instabilities is essentially an inviscid process that can equally be modelled by a time-
dependent numerical solution of the flow governing equations. In mode growth modelling, the
convective fluxes in the scheme play a dominant role and the instabilities take the form of
convecting velocity and vorticity waves.

As the instabilities propagate downstream, momentum diffusion reduces the asymptotic growth
of these finite-amplitude waves and the modes saturate. This phase of shear layer development
occurs above the shock cell pattern, where instability–shock interaction generates screech. Further
downstream, away from the main screech noise sources [7,8], the instability modes decay and
generate a turbulent kinetic energy cascade to higher frequencies and wavenumbers, where kinetic
energy is dissipated at the Kolmogorov length scale. A fully developed turbulent flow sets up
downstream of the shock–shear layer interaction region, the latter being the established screech
noise source mechanism.

A model is sought for the time-dependent evolution of the large-scale shear layer instability and
surrounding compressible flow, with emphasis on capturing the fluid motion from the nozzle lip
up to the dominant instability modes saturation zone, extending to the upstream threshold of the
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fully mixed flow region. As time accuracy is of concern, a time-averaging approach was followed
to discretize the governing equations. The method consists to time average by an interval that is
long compared with the unresolved motion and sufficiently short to capture the time history of the
large-scale motion. Upon short-time averaging, a scalar f is split between a short time-averaged *f

and a fluctuation component f 00; so that f ¼ *f þ f 00:
The fluctuation products obtained are formally identical to the Reynolds averaged equations.

For simplicity, terms like gr00T 00r00T 00 are not modelled since, for instance, heat transfer effects are
dependent on the time mean temperature gradient. As in Lilley et al. [15] it is further assumed that
product terms involving the small-scale density fluctuation make little added contribution when
the added variables involve u00 or u00u00:

The k–o two-equation model of Wilcox [16] is adopted to provide a first approximation to the
short time-averaged fluctuation products. For a steady flow numerical model, like the fully
expanded jet test presented later on, the method is identical to an explicit Reynolds averaged
approach and converges to a steady solution. In the case of jet screech, the k–o model covers a
different role. Specifically it provides localized dissipation by eddy viscosity in the shear layer,
damping the finite amplitude wave growth within. Short time-averaged velocity gradients are used
in the model rather than time mean gradients. This provides a mechanism for the large-scale
structures to drive the eddy viscosity field, yielding maximum damping as the shear layer modes
reach maximum amplification. The convective terms in the k–o model give an eddy viscosity
maximum downstream of the mode saturation point which occurs between 6 and 10 jet diameters
downstream of the nozzle exit. This provides a model for instability mode damping in the mixed
flow region, qualitatively reproducing the round shear layer mode physics obtained by Lilley [17]:
after saturation, the shear layer modes are convectively suppressed.

The short time-averaged Navier–Stokes equations for an axisymmetric flow in cylindrical
coordinates ðx; rÞ are

@rW

@t
þ

@rF

@x
þ
@rG

@r
þ S ¼

@rFt

@x
þ

@rGt

@r
þ rSt; ð1Þ

where the conservative variable vector W; inviscid ðF;GÞ and turbulent ðFt;GtÞ flux vectors, and
axisymmetric source terms ðS;StÞ are

W ¼ ð *r; *r *ux; *r *ur; *r*esÞ
T; F ¼ ð *r *ux; *r *u2

x þ *p; *r *ux *ur; *r *ux
*hsÞ

T;

G ¼ ð *r *ur; *r *ur *ux; *r *u2
r þ *p; *r *ur

*hsÞ
T; S ¼ ð0; 0;� *p; 0ÞT;

Ft ¼ ð0; *txx; *txr; *ux*txx þ *ur*txr þ *qx þ ð *ml þ s� *mtÞ@ *k=ðRe@xÞÞT;

Gt ¼ ð0; *trx; *trr; *ux*trx þ *ur*trr þ *qr þ ð *ml þ s� *mtÞ@ *k=ðRe@rÞÞT;

St ¼ 0; 0;
2

3

*ml þ *mt

rRe

@ *ux

@x
þ

@ *ur

@r
� 2

*ur

r

� �
þ

2

3
*r
*k

r
; 0

� �T

: ð2Þ

Normalized variables are used in Eq. (2) and through the rest of this article. The exit plane
conditions ðre; ue;Te;MeÞ are the reference values. Lengths are normalized by the exit diameter De;
density by re; velocities by ue; pressure by reu

2
e ; stagnation enthalpy, stagnation energy and

turbulent kinetic energy *k ¼ ðgu00xu00xu00xu00x þ gu00
r u00ru00
r u00r Þ=2 by u2

e ; temperature by Te; time by De=ue; specific
dissipation rate by ueRe; and viscosity by me:
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The state equation *p ¼ *r *T=ðgM2
e Þ relates *p; *r and *T: The stress tensor *t is

*txx ¼ 2
*ml þ *mt

Re

@ *ux

@x
�

2

3

*ml þ *mt

Re

@ *ux

@x
þ

@r *ur

r@r

� �
�
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3
*r *k;
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and the heat flux vector is

*qx ¼
1

ðg� 1ÞM2
e Re

*ml

Pr
þ

*mt

Prt

� �
@ *T

@x
; *qr ¼

1

ðg� 1ÞM2
e Re

*ml

Pr
þ

*mt

Prt

� �
@ *T

@r
: ð4Þ

The viscous stress tensor in Eq. (3) is based on the short time-averaged velocity gradients and
accounts for the effects of molecular viscosity. In a turbulent flow, the highest kinetic energy
wavenumbers, the Kolmogorov length scales, are significantly affected by molecular viscosity that
causes kinetic energy dissipation into heat. The dissipation is dependent on the instantaneous flow
shear. The short time-averaged velocity gradient is an improved approximation with respect to the
use of the time mean shear gradient in Reynolds averaged methods. In Eq. (2) viscous terms
appear in the turbulent fluxes only, similarly to a two-dimensional Cartesian reference system.
This is consistent with the viscous stresses being applied at the boundaries of a fluid element rather
than at its centre. Laminar viscosity is estimated by the Sutherland law,

*ml ¼ 1:458 � 10�6ð
ffiffiffiffiffi
Te

p
=meÞ *T

3=2=ð *T � 110:4=TeÞ: ð5Þ

Auxiliary relations for the stagnation energy *es and stagnation enthalpy *hs are

*es ¼ *T=½gðg� 1ÞM2
e 	 þ ð *ux *ux þ *ur *urÞ=2 þ *k; *hs ¼ *es þ *p= *r: ð6Þ

3.2. Turbulence model

A two-equation k–o turbulence model of Wilcox [16] is used to calculate the eddy viscosity
*mt ¼ *r *k= *o from the turbulent kinetic energy *k and specific dissipation rate *o: The governing
equations for *k and *o are
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and the short time-averaged Reynolds stress tensor is

*txx ¼ 2
*mt

Re
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�
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The turbulence closure constants ða; s; s�Þ are 5=9; 1=2 and 1=2: The Menter [18] dissipation
constant sd is 0:5: ðb�; b��Þ are scaled form the incompressible values b�i ¼ 3=40 and b��i ¼ 9=100
by

z� ¼ 1:5; b� ¼ b�i 1 ¼
b��i

b�i
z�F ðMtÞ

� �
; b�� ¼ b��i ½1 þ z�F ðMtÞ	; ð9Þ

F ðMtÞ ¼
0 MtpMt0

M2
t � Mt0 Mt > Mt0

( )
; Mt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 *r *k=ðg *pÞ

q
; Mt0 ¼ 0:25: ð10Þ

The constants for turbulence closure [16] have been calibrated for steady flow problems.
However computational results have shown that, for the specific overexpanded jet flow
considered, the predictions were unchanged upon halving and doubling b�: Turbulence constants
calibration ought to affect mainly the mixing flow predictions, downstream of the peak screech
instability. A more systematic constants calibration is required by comparison with large eddy
simulation results that resolve the jet kinetic energy inertial sub-range. This may improve the
mixing flow prediction and eventually enable to address jet mixing noise. Performing such space
resolved simulation is currently beyond the computational resources available to the authors.

3.3. Numerical model

The discrete form of the governing equations are integrated over a mesh of unit control volumes
ij to give a finite volume approximation to the continuous flow. The computational domain
extends 30:25De in the streamwise direction and 5De in the radial direction, as shown in Fig. 2. A
rectangular regular 625 � 140 mesh, shown in Fig. 3(a), was selected to give a unit cell size
ðDx;DrÞ of ð0:05De; 0:0357DeÞ: Computational and physical spaces are related by x ¼ iDx; r ¼ jDr:
A finer 625 � 280 mesh (Fig. 3(b)) was also used to study the cell size effects on the numerical
prediction.
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The over-expanded jet features a shock expansion pattern that characterizes the high-speed
flow, close to the nozzle outlet. To resolve these flow discontinuities an approximate Riemann
solver is introduced as in Zhang and Edwards [19]. The Roe [20,21] flux difference split
approximate Riemann solver implemented by Quirk [22] evaluates the inviscid fluxes at the unit
cell interfaces. The mid–mod flux limiter introduces an upwind bias close to the shocks to preserve
monotonicity. The method reduces to a second order centred Lax–Wendroff equivalent in regions
of smooth flow. Second order central differences are used to evaluate the turbulent fluxes at the
cell boundaries.

By applying the Gauss divergence theorem to the discrete governing equations for mass,
momentum and energy, the fluxes are related to the change of flow state with time. Integration in
time is then performed by a compact four step Runge–Kutta scheme as in Manna [23]. Non-
standard Runge–Kutta coefficients ð1:0; 0:5; 0:25; 0:12Þ maximize the scheme stability and give a
theoretical 2

ffiffiffi
2

p
Courant number limit for inviscid flows [23].

The boundary conditions are as shown in Fig. 2. Along the jet axis b1 the axisymmetric
boundary condition Wj=W�

j�1; Wjþ1=W�
j�2 is imposed, where W�

k =ð *r; *r *ux � 2 *r *uxdik;
*r *ur � 2 *r *urdjk; *r*esÞ

T: At the open flow boundaries b2�b4 the conservative variables are
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extrapolated linearly. At the solid boundaries b5�b7 the wall condition rWk ¼ rW�
k�1; rWkþ1 ¼

rW�
k�2 is used. At the supersonic jet inlet the flow is fixed.

The time-dependent numerical simulation is started from zero flow ambient conditions. The
computation was then advanced by a fixed time step D*t ¼ 5 � 10�5 to *t ¼ 0:25 to obtain a
stationary flow, as indicated by the static axial pressure monitored at x ¼ 5De; 15De; 25De: The
turbulent kinetic energy remains at its initial zero value, as detailed in Rona [24], since this is a
trivial solution in Eq. (7). During this initial phase of the computation, screech develops without
forcing the inviscid model flow. At this stage, the screech frequency is not pre-determined. The
predicted pressure history from the inviscid model jet was then analyzed to quantify the dominant
screech frequency f and Strouhal number Str ¼ fDe=ue: This gave Str ¼ 0:36: The time-dependent
turbulent jet model then used this screech frequency to sustain the flow instability.

The dominant screech Strouhal number predicted by the inviscid jet model was validated
against the reference literature [25]. Specifically, the unified description of shock-associated noise
and screech tones in Tam [25] leads to the predictive relationship for the screech frequency

f ¼ uc=Lð1 þ McÞ ð11Þ

where uc is the convection speed of shear layer instabilities in the jet, Mc ¼ uc=aN is the
convection Mach number, referenced to the ambient speed of sound aN; and L is the fundamental
shock cell wavelength. In Tam [25], L is derived from a multiple scales shock cell structure model
evaluated where the shear layer instabilities attain their maximum amplitude. Eq. (11) was shown
to be identical to the result of Powell [4] and that of Harper–Bourne and Fisher [26] for shock-
associated propagation in the upstream direction when L is taken to be the shock cell spacing [25].
In the present study, L is taken as the average shock spacing of shock cells 2, 3 and 4, which are
the most active flow areas of the supersonic jet plume. To evaluate uc; the approximation uc ¼
0:7uj from Tam [25] is used, where uj is the fully expanded jet velocity. L is evaluated from the
time-averaged axial pressure measurements of Norum and Seiner [3] as L ¼ 0:87De: Given that
uc ¼ 0:7uj ¼ 0:58ue; Eq. (11) gives Str ¼ 0:356E0:36; which agrees with the inviscid jet model
prediction.

To obtain a turbulent jet prediction, the *k and *o fields were primed to non-zero values and the
computation was further advanced to *t ¼ 1:4: Upon priming *k and *o; the transient values of eddy
viscosity tended to suppress screech, therefore, to sustain screech, the flow was forced at a single
point in the separating shear layer, along the nozzle lip line. This forcing pre-determines the
fundamental screech frequency in the turbulent jet simulation. Still, the chosen forcing frequency
was not arbitrary but was derived from the inviscid prediction of the flow field, which is similar in
geometry to the turbulent jet flow field close to the nozzle lip, where the screech instability
develops. This motivated the selection of the forcing frequency f : Forcing was obtained by the
introduction of single-point momentum disturbance of amplitude 0:071rUeDe=d at ðx ¼
0:5De; r ¼ 0:5DeÞ; d being the shear layer local vorticity thickness [27].

The aerodynamic pressure prediction at x ¼ 5De was essentially insensitive upon changing the
disturbance spectrum from f to a linear combination of f =2; f ; 2f (equal amplitude in-phase
components). Increasing by three-fold the perturbed area caused a variation of pressure amplitude
prediction at x ¼ 5De below 10%.

Stationary flow statistics were collected between *t ¼ 1:4 and 2.15. The time step D*t ¼ 5 � 10�5

satisfies the Courant–Friedrichs–Lewy (CFL) condition and corresponds to 0.28CFL and
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0.56CFL on the 625 � 140 and 625 � 280 meshes, respectively. The computation was performed
on the Rutherford Appleton Laboratory DEC8400, UK. The computational effort on the 0:2
GFlop/s sequential peak performance machine is 15 CPU hours per job. A disk space of 18.5
megabytes was used for each supersonic jet test case. Specifically, the program and executables
occupy 5 megabytes of file space and the data file size is 12.5 megabytes.

4. Results and discussion

4.1. Fully expanded jet

When a Mach 2 nozzle is operated at its design pressure ratio, a shock-free plume is obtained.
In practice such condition is rarely achieved due to slight imperfections in the nozzle geometry or
boundary layer growth that prevent parallel exit flow. A weak shock cell pattern downstream of
the nozzle was obtained in the experiment of Seiner et al. [2]. This can be detected from small
oscillations in the measured time averaged axial velocity [2], close to the nozzle exit plane, shown
in Fig. 4. The computed flow field also shows a weak over expansion and weak shock cells can be
noticed in the time mean density field predictions of Fig. 5(a). These predictions were found to be
very sensitive to the nozzle pressure ratio and weak shock cells were produced when a four digits
pressure ratio ps=pN ¼ 7:824 was used.

The time mean results are non-dimensional in the same way as those of Section 3.1. A turbulent
shear layer develops downstream from the nozzle lip (Fig. 5(b)), growing linearly with the
downstream direction while the jet entrains fluid from the surrounding medium. The shear layer
reaches the jet axis between 12De and 13De downstream of the exit plane, enclosing a region of
Mach 2 flow, the high-speed core. Further downstream the jet spreading reduces the axial Mach
number below 2 and by x ¼ 25De the flow is fully subsonic. The axial extension of the high-speed
core and the streamwise velocity along the jet axis are compared with measurements in Fig. 4. The
small amplitude fluctuations close to the nozzle exit are due to the weak shock cell pattern in the
jet plume. In experiment, this is likely to depend on slight imperfections in the nozzle geometry or
boundary layer growth that prevent parallel exit flow. Therefore, only an approximate match is
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achieved with the numerical model where the jet is fully axisymmetric. A fair agreement is found
for the length of the high-speed core, suggesting that jet flow entrainment leading to shear layer
growth is predicted. The shear layer growth rate in the fully mixed flow region is somewhat higher
than in measurements.

The constant jet spreading rate is unaffected by the plume approaching the computational
domain radial boundary b3, indicating that the implemented boundary conditions are adequate.
A localized reduced jet spreading is noticeable close to the exit flow boundary. This effect is
confined to the immediate neighbourhood of the exit boundary.

The shear layer growth and radial spread are further quantified by the half-velocity point r0:5ðxÞ
and shear layer thickness parameter bðxÞ: As in Seiner and Ponton [28], bðxÞ ¼ r0:5ðxÞ � r0:1ðxÞ;
where r0:5ðxÞ is the radial distance at which %ux is 0:5 of the speed on the jet axis, and similarly for
r0:1ðxÞ: The shear layer thickness is monotonically growing in the streamwise direction, both
around the high-speed core and in the mixing region which develops downstream of it (Fig. 6(a)).
A reduced rate of growth was measured at the end of the high-speed core, where the flow adapts
to the geometrically self-similar regime of mixing region, detailed further on. This is captured in
the predictions. The looser agreement in this region can be attributed to the transitional character
of the flow which could also have been affected by the intrusive measurement technique used in
Seiner and Ponton [28]. The maximum discrepancy is approximately 10%. The half-velocity point
distribution in Fig. 6(b) clearly displays the regions where the shear layer encloses a high-speed
core ðxo12DeÞ and the mixing region downstream of it. The first three measurement points close
to the nozzle lip exit show some variation in the half-velocity point slope with respect to the flow
further downstream. The trend is also noticeable in the predictions, in spite of some spatial
discretization effects. The jet flow within 1De from the nozzle exit is not fully developed but tonal
shear layer instabilities characterize the local kinetic energy spectrum, as discussed in Lilley [17].
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In the mixing region ðx > 12DeÞ the mean velocity profile is characterized by a geometrical self-
similarity, shown in Fig. 7. Normalized velocity profiles at different streamwise locations are
presented, where the streamwise velocity is normalized by its axial value and the radial
co-ordinate by a shifted streamwise distance ðx � x0Þ: A reasonable collapse is obtained, in
agreement measurements. The agreement improves at ðx > 15DeÞ away from the reduced shear
layer growth region identified in Figs. 6(a, b) at the end of the high-speed core. Away from the
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high-speed core, the velocity profile can be taken as proportional to ðx � x0Þ; displaying an almost
linear jet spreading, also shown in Fig. 5(b).

These predictions of a fully expanded Mach 2 jet provide a first validation for the turbulence
model implementation in the time-dependent numerical method, applied to axisymmetric flows.
In the numerical model jet the eddy viscosity determines the jet entrainment and the transfer of
momentum from the high-speed flow to the surrounding medium. In the over-expanded jet study
that follows, the resolved motion of screech instability mainly depends on the inviscid pressure–
velocity balance in the flow and the Wilcox k–o model is used to approximate the flow geometry.
As such, the turbulence model provides a first working attempt towards accounting for the shear
layer growth in modelling screech.

4.2. Over-expanded jet: mean flow

A 7.824 stagnation to ambient pressure ratio is imposed at the Mach 2 nozzle exit to obtain an
over-expanded jet. The pressure difference between the nozzle exit plane and the ambient
conditions initiates a shock-expansion sequence at the nozzle lip, displayed by the time mean
density contours in Fig. 8(a). The growing shear layer shed from the nozzle lip bounds the shock
containing high-speed flow, providing a boundary for multiple shock reflections. The intercepting
shocks form four conical shock cells of streamwise decaying intensity. Downstream of xB6De the
shocks and expansion waves in high-speed flow are of a reduced intensity and assume a minor role
in the mean-flow development. Further downstream the flow is fully subsonic and shock free. The
streamwise extension of the high-speed flow is xB10De; where the shear layer reaches the jet axis.
Further downstream a fully mixed flow region is formed as for the fully expanded jet. Comparison
between the mean velocity predictions in Fig. 8(b) and the previous result for the fully expanded
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jet in Fig. 5(b) highlights different shear layer growth rates at xp6De and the over-expanded jet
shear layer is thinner in the early stages of jet development. In the current study an axisymmetric
screech mode is modelled. At this flow regime, the presence of pressure and density gradients in
the shear flow may have locally affected the vorticity growth. Panda [10] highlighted that, when
shock cells are present in an under-expanded jet, the convection speed of instability waves in the
shear layer is modulated by the streamwise pressure gradient. A similar compressible effect in the
predicted flow of the over-expanded jet may likewise influence the growth rate of the instabilities
and the shear flow mean spread. In an asymmetric B screech mode [7,8] the presence of the
flapping plane is a more dominant effect in determining the shear layer mean growth and the jet
features a faster spreading rate when screech is enhanced.

The downstream mixing regions of fully and over-expanded jets show geometric self-similar
flows with the same defining characteristics. The regular contour spacing indicates a linear shear
layer growth rate. Due to the mixing region similarity between the test cases, the analysis in the
following is focused on the high-speed flow upstream of it.

The mean-pressure distribution close to the nozzle outlet discloses further details of the shock
containing flow (Fig. 9). Along the r ¼ 0:25De line (Fig. 9(b)) sharp pressure peaks and rounded
pressure minima alternate, corresponding conical shocks and expansion regions also recorded in
measurement [3]. As the jet is over-expanded, the jet exit pressure pe is lower than the ambient
pressure pN and the shock cell sequence starts with a shock at the nozzle lip. Fig. 9(b) indicates
that the magnitude of the pressure gradient is larger at shocks than in the expansion regions, in
accordance to the shock physics of being a more localized pressure fluctuation. This is correctly
captured by the numerical method. On the jet axis the shock reflection increases the thickness of
the compression region (Fig. 9(a)), leading to a more sinusoidal pressure trace. Fig. 9 also gives a
quantitative description of the streamwise decaying shock strength observed in Fig. 8(a). The
measured and predicted trends match. The shear layer streamwise growth reduces the enclosed
high-speed flow radius. The shear layer convexity and decreasing axial mean flow speed reduces
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the shock angle within successive cells. This results in the time-averaged shock cell spacing
decreasing in the axial direction, as shown in Table 1. Broad agreement is found between the
measured and predicted spacing L up to the fourth cell L4: Predictions with the empirical
relationship of Seiner and Norum [5] for the second shock cell spacing L2 and the average spacing
/ %LS are also in fair agreement.

The predicted pressure modulation is lower than the measured value, the reasons for which are
now discussed. The shear layer enclosing the shock containing flow features large-scale
fluctuations, shown in Fig. 10. These axisymmetric screech modes influence the reflected shock
position and reflection angle, leading to oscillations of the shock cell pattern. The main flow
features determining shock movement are (i) the periodic pressure perturbation due to upstream
propagating sound waves, (ii) the coupling motion of each shock, (iii) the aerodynamic pressure
fluctuation due to the passage of organized structures, and (iv) the distortion of the subsonic–
supersonic interface during shear layer oscillations. The shock movement causes shock smearing
in the time-averaged prediction. Sharper shocks are shown downstream of the second shock cell in
the short time-averaged results of Fig. 10, compared to Fig. 8(a). Shock smearing in the time-
averaged results is thus proportional to shock movement.

The time-averaged pressure modulation under-prediction in Fig. 9 could be due to a shock
oscillation of larger amplitude in the computed flow field. In fact the measured shock amplitude is
best matched in the neighbourhood of the nozzle lip, where shear layer instability modes are not
fully developed. The onset of non-axisymmetric modes in the measured flow could have also
contributed. As the time-dependent shock fluctuation is not documented in the measurements, the
matter awaits a further investigation.

4.3. Over-expanded jet: unsteady aerodynamics

In over-expanded jets, large-scale shear layer oscillations are a dominant feature of the time-
dependent flow. These develop around the high-speed shock containing flow and are shown by
arrows 1 in the short time-averaged density prediction of Fig. 10(a). The instabilities start from
the nozzle lip and grow in the streamwise direction by convective amplification. The modes
captured by the axisymmetric numerical method are toroidal. Past measurements by Seiner et al.
[29] indicated that toroidal modes are significant contributions to the flow instability in over-
expanded jets. These modes increase in relative amplitude with the degree of over-expansion over
azimuthal instabilities and are dominant in the fully expanded jet Mach number range Mjp1:2:
At Mj ¼ 1:49 the jet plume studied by Seiner et al. [29] could have exhibited both toroidal and
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Table 1

Over-expanded Me ¼ 2:0 jet mean shock spacing along the jet axis

Shock spacing Prediction Measurement [3] Theory [5]

L1=De 1.00 1.00 —

L2=De 1.00 0.94 1.09

L3=De 0.95 0.83 —

L4=De 0.95 0.83 —

/ %LS=De 0.97 0.90 0.88
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helical or flapping shear layer instabilities. These helical or flapping instabilities are not captured
by the axisymmetric numerical method available for this study. Consequently, the numerical
method is unable to address any mode staging between axisymmetric and non-axisymmetric
modes in the jet, leading to the probable absence of some higher order modes in the predicted
near-field pressure fluctuation spectra presented later on. Still, the time-dependent numerical
method provides a valuable insight into the convective amplification of flow instabilities in the jet
shear layer and into their interaction with the shock cells, which is the established mechanism for
screech generation. This underlying self-sustained instability mechanism, involving the selective
amplification of shear layer instability modes, the shear layer interaction with the shock cell
pattern and the upstream propagation of feed-back disturbances, is fundamentally similar
between axisymmetric and non-axisymmetric screech regimes. Therefore, the numerical method
enables to detail salient aspects of this time-dependent compressible flow instability, albeit the
analysis is restricted to the axisymmetric modes of the jet.

The streamwise growth of the simulated toroidal instability modes, close to the nozzle lip, has
been determined by monitoring the time-dependent radial velocity at six streamwise locations,
between 1De and 3:5De; along the nozzle lip line. To isolate the contributions from individual
modes in the radial velocity fluctuation, narrow band-pass filtering has been used. Specifically, the
power spectral density of the radial velocity has been windowed around the fundamental
instability mode Strouhal number Str ¼ 0:36 and its harmonics with a square window of width
DStr ¼ 0:022: Fig. 11 shows the amplification of the dominant mode and of its second harmonic
along the nozzle lip line. The predictions are normalized by the respective mode amplitudes at
x ¼ 1De: Between x ¼ 1:5De and xB3De the dominant instability mode is, in essence,
exponentially growing, with an exponential amplification factor of 1.5 per nozzle exit diameter
De; as indicated by the continuous line. The second harmonic also grows exponentially between
x ¼ 1De and xB2:5De at a rate of 1.75 per De; as indicated by the dashed line.

Between x ¼ 3De and x ¼ 5De the finite amplitude oscillation causes the propagation of the
mode non-linearities, the dominant instability mode saturates and the shear layer is rolled up.
This flow evolution was also observed in the axisymmetric shear layer experiments of Gharib and
Roshko [30], indicating a Kelvin–Helmholtz type instability.
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The convected instabilities saturate to their maximum amplitude towards the end of the high-
speed core where they interact with the quasi-periodic shock pattern, producing an unsteady
pressure field. One of such interactions is marked by arrow number 2 in Fig. 10(a). This
interaction provides the feedback at the nozzle lip for the selective amplification of shear layer
instability modes. This tonal characteristic of the instability is given by the match between a
standing wave pressure pattern and the shear layer instability wavelength [10]. Jet screech is thus
established. Four phases of the predicted screech fundamental cycle are shown in the sequence of
Fig. 10 (a–d).

Examining the shock position in the sequence Fig. 10(b, c) highlights shock movement. This is
most evident in the third cell, at xB2:5De; where the shock identified by arrow number 3 bows
upstream in Fig. 10(b) and downstream in Fig. 10(c). The wave-like motion of velocity and
vorticity waves along the shear layer can be observed in the short time-averaged velocity sequence
in Fig. 12. The pairs of local streamwise velocity maxima and minima at either side of the shear
layer indicate downstream propagating phase coherent points. The phase coherent velocity
minima at the top edge of the shear layer are marked by the arrows number 1 in Fig. 12(b). The
time mean distance between two points is the wavelength of the screech second harmonic l=2: The
mean convection speed is 0:67ue: Fig. 12(d) shows a slightly non-uniform spacing between
successive phase coherent points, indicated by the arrows number 2, suggesting a variation in
convection/phase speed of the instability modes in the streamwise direction. The principal causes
are (i) the pressure gradients associated with the unsteady pressure field extending from the shear
layer to the free stream and (ii) compressible effects from the high-speed core edging the shear
layer. Modulation in convective speed was measured and reported by Panda [10] for a similar
under-expanded round model jet.

At x > 5De the shear layer develops into the fully mixed flow region. Close to the downstream
boundary, the time-dependent results do not display any departure from a uniform growth rate,
indicating that the implemented computational boundary conditions are adequate.

In a high Reynolds number jet, the fully mixing region develops as a high Reynolds number
wake. As the rolled up vortices break down, vorticity is transferred to higher frequency and
wavenumbers in the turbulent kinetic energy spectrum. At Re ¼ 2:3 � 106 there is no evidence of
vortex pairing which is instead a feature of lower Reynolds number jets. In the numerical model,
these higher frequency and wavenumber modes are modelled by the turbulent kinetic energy
which features a time averaged maximum at xB5De (Fig. 13(a)). As the fully mixing region
expands further downstream from the nozzle exit all velocity fluctuations are modelled by the
unresolved part of the turbulent kinetic energy spectrum. Their effect on the conservative
variables is estimated by the k–o turbulence model and the short time-averaged flow in this region
is steady.

The interaction of the downstream propagating velocity and vorticity waves drive the unsteady
aerodynamic pressure in the predicted shear flow of the over-expanded jet, shown in Fig. 13(b).
Local maxima in unsteady pressure fluctuation *pr:m:s: occur in the shear layer at 2Depxp5De

where the shear layer rolls up. Longitudinal undulations in the predicted contours are noticeable
outside the high-speed core. The oscillations have spacing similar to the shock cells inside the
high-speed core and are probably due to the super imposition of a stronger downstream
propagating pressure wave associated to the instability wave convection and a weaker upstream
propagating wave. The oscillations are more pronounced away from the jet axis, beyond the
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nozzle lip line, suggesting a possible different nature between the two wave fronts. It is reasonable
to assume that both pressure fluctuations are generated approximately along the nozzle lip line by
the momentum unsteadiness in the shear layer. The downstream pressure fluctuation is likely to be
an aerodynamic or ‘‘hydrodynamic’’ Poisson pressure, decaying radially as 1=r2: The upstream
wave front can be classified as an acoustic radiation, decaying as 1=r: At a certain distance from
the shear layer the different rate of decay eventually leads to a standing wave pattern. Further
away from the shear layer the acoustic waves are attenuated by the dissipative characteristics of
the second order accurate numerical method. Work is on going on higher order dispersion
relation preserving methods along the lines of Shen and Tam [31] and Manning and Lele [32] to
better address the acoustic field within the computational domain.

Inside the high-speed core the streamwise fluctuations of the conical shock fronts about their
mean position show as *pr:m:s: maxima in Fig. 13(b). These maxima are distinct from the high *pr:m:s:

region in the shear layer and more compact in the streamwise direction, confirming that shock
movement occurs within the bounds of 0:5De or half a shock cell. Along the axis the predicted
root mean square pressure peak agrees with the time mean shock location predicted in Figs. 8(a)
and 9(a). The pressure maxima on the axis are of larger amplitude than in the shear layer. This
result is interesting, since the largest pressure fluctuations would be expected at the location of the
largest shock movement that occur along the unsteady shear layer. At this location the shock
fluctuation and the unsteady ‘‘hydrodynamic’’ pressure due to shock–shear layer interaction add.
However, the pressure maxima are function of shock motion and shock strength. As weaker
shocks move both axially and radially in the shear layer, the pressure fluctuations are smeared
locally, giving a higher value of *pr:m:s: on the axis. This feature was also measured by Panda [11]
for a similar under-expanded jet flow.
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The short time-averaged pressure fluctuation amplitude in the mixing region at x > 5De is
reduced by eddy viscosity effects as momentum fluctuations are not resolved but modelled by the
turbulent kinetic energy *k: No appreciable increase in *pr:m:s: is noticeable approaching the
computational domain boundaries, indicating that the implemented boundary conditions are
adequate for this jet flow application.

4.4. Over-expanded jet: pressure fluctuations

The streamwise momentum fluctuation in the shear layer is accompanied by unsteady pressure.
Inside the high-speed core at x ¼ 5De the predicted short-time root mean square pressure is
0:05reu

2
e on the jet axis and 0:06reu

2
e at r ¼ 0:25De: The corresponding overall pressure level

values are 173:31 dB re 20 mPa and 175:02 dB re 20 mPa; respectively. The predictions are
approximately 6 dB lower than in the inviscid jet model of Zhang and Edwards [19]. In the present
simulation the eddy viscosity determines the maximum mode amplitude and ought to better
model the effects of the less-resolved inertial subrange influencing the mode saturation.

The selective amplification of shear layer instability modes produces an aerodynamic pressure
spectrum characterized by tones, as shown in Fig. 14. The narrow band DStr ¼ 0:012 power
spectral density was computed from the predicted short time-averaged pressure, monitored inside
the high-speed core, close to the shear flow. The regular passing of velocity and vorticity waves by
the monitoring point gives the observed tones at Strouhal numbers 0.36 and 0.46.

Using linear instability theory arguments [33], Mitchell et al. [34] estimated the most unstable
shear layer mode for a Mach 2 jet to be Str ¼ 0:3598; in agreement with the k–o model prediction.
This result also ties with the application of Tam’s predictive relation for the screech frequency
[25], which gives Str ¼ 0:36: The onset and initial amplification of the flow unsteadiness is thus a
mainly inviscid effect that can be predicted by analytic solutions of the linearized governing
equations. The dominant mode Strouhal number can be estimated analytically. Mode saturation
and fluctuation amplitude prediction are non-linear problems and require a numerical solution of
the kind given here.

The contributions from the wider 0:01pStrp10 Strouhal number range to the unsteady
aerodynamic pressure can be assessed from Fig. 15. The third octave Sound Pressure Levels (SPL)

ARTICLE IN PRESS

0.0 2.0
 80

180

0.32

0.36 0.46

Str

PS
D

(d
B

 r
e 

20
�

 P
a)

Fig. 14. Over-expanded Me ¼ 2:0 jet power spectral density of aerodynamic pressure. Predictions at x ¼ 5De;
r ¼ 0:25De:

A. Rona, X. Zhang / Journal of Sound and Vibration 270 (2004) 297–321 317



increase with Strouhal number up to Str ¼ 0:5: The three maxima at Str ¼ 0:13; Str ¼ 0:32 and
Str ¼ 0:50 third octave bands are related respectively to a screech subharmonic, the Str ¼ 0:36
screech tone and the Str ¼ 0:46 tone. At higher Strouhal numbers the SPL roll off is
approximately 40 dB per decade, or *ppStr�2: This indicates that the turbulent kinetic energy
in the flow is developed within the narrow Strouhal number bands of the screech tones and that
the computational resolution in space and time was adequate to resolve the main energy length
scales. The spectral levels at Str > 0:5 are probably due to higher tone harmonics in the inertial
subrange of the scales of motion. The latter features a similarly uniform roll off of approximately
40 dB per decade for kinetic energy in fully and imperfectly expanded jets [2,5].

5. Concluding remarks

A numerical method has been applied to perform a joint time-averaged and time-dependent
analysis of jet screech. The method separates the mean flow from the large-scale structures that
characterize the aerodynamic unsteadiness in screech. It advances the approach of Zhang and
Edwards [19] by including a model for the unresolved length scales of turbulence.

Comparisons between predictions and measurements for a fully expanded Mach 2 jet provided
a first calibration for the TRANS numerical method applied to axisymmetric flows. The
turbulence model was shown to reproduce the mean jet geometry with some accuracy close to the
jet outlet. Further downstream, a broader agreement within 10% was achieved for axial velocity.
Main features of the mixing flow region were correctly modelled: (i) a self-similar flow and (ii) a
quasi-linear shear layer growth rate were predicted.

The numerical method with the same turbulence closure parameters was then applied to study
jet screech. Resolving the large-scale motion in the flow modelled most of the essential physics of
this resonant instability: (i) shear layer instabilities generated at the nozzle lip were convectively
amplified (ii) the saturating finite amplitude modes interacted with the periodic shock cell pattern
(iii) an unsteady pressure field resulted from such interaction that generated resonance, and
(iv) resonance enhanced narrow band flow fluctuations, evident in the predicted pressure
spectrum.
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A review by Raman [7,8] highlighted the experimental evidence available on shock cell
fluctuations as a key aspect of screech. The current study is a first attempt to model such
important physics by building time dependence into shock cell predictions.

The time-dependent predictions captured shock cell motion in jet screech. Preliminary evidence
was found in the measured and predicted time mean compression regions, where shock-related
pressure gradients reduce in magnitude downstream of the nozzle exit. Time accurate predictions
further qualified shock motion during screech. The largest shock-induced pressure fluctuation
occurs along the jet axis. The driving mechanism is the oscillations of the shear layer, which is a
waveguide for the shocks. The downstream convected vortical structures that characterize the
shear layer motion also display a non-uniform convecting speed.

The pressure field is characterized by a stronger downstream propagating pressure wave and a
weaker upstream acoustic wave. The aerodynamic pressure fluctuations are approximately
175 dB: The result highlights a risk for structural damage of nozzle components in engineering
applications and is thus of concern to engineering design.

Screech is fundamentally an inviscid flow resonance that is tonal. Multiple tones were present in
the numerical model flow that were confined within one octave.

By numerical analysis, estimates for both round jet screech frequency and amplitude were
obtained. The method would likewise enable to examine modified jet geometries and flow
conditions to reduce or suppress screech.
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Appendix A. Nomenclature

A instability mode amplitude
e internal energy
f frequency
h enthalpy
k specific turbulent kinetic energy
M Mach number
p pressure
Pr Prandtl number, 0.71
Prt turbulent Prandtl number, 0.9
q heat flux vector
R gas constant, 287 J=kgK
Re Reynolds number, reue=me

Str Strouhal number, fDe=Ue

t time
T temperature
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u velocity
d shear layer vorticity thickness
dik Kronecker d-function
g ratio of specific heats, 1.4
l screech wavelength
m viscosity
r density
o specific dissipation rate
t stress tensor
%ð Þ time mean
*ð Þ short time mean
ð Þ00 short time fluctuation
ð ÞT transpose vector
ð Þe nozzle exit value
ð Þi incompressible value
ð Þl laminar value
ð Þr radial component
ð Þs stagnation value
ð Þt turbulent value
ð Þx axial component
ð Þ

N
free stream

References

[1] Y. Nakamura, T. Oishi, J. Julliard, A. Dravet, Mixer–ejector noise characteristics with aerodynamic performances,

AIAA Paper 98-2325, Fourth CEAS/AIAA Aeroacoustics Conference, Toulouse, France, 1998.

[2] J. Seiner, D. McLaughlin, C. Liu, Supersonic jet noise generated by large-scale instabilities, Technical Paper 2072,

NASA, September 1982.

[3] T. Norum, J. Seiner, Measurements of mean static pressure and far-field acoustics of shock-containing supersonic

jets, Technical Memorandum 84521, NASA, 1982.

[4] A. Powell, On the mechanism of chocked jet noise, Proceedings of the Royal Society of London 66 (408B) (1953)

1039–1056.

[5] J. Seiner, T. Norum, Aerodynamic aspects of shock containing jet plumes, AIAA Paper 80-0965, Sixth AIAA

Aeroacoustics Conference, Hartford, CT, USA, June 1980.

[6] J. Seiner, Advances in high speed jet aeroacoustics, AIAA Paper 84-2275, October 1984.

[7] G. Raman, Advances in understanding jet screech, AIAA Paper 98-0279, 36th AIAA Aerospace Sciences Meeting

& Exhibit, Reno, NV, USA, January 1998.

[8] G. Raman, Advances in understanding supersonic jet screech: review and perspective, Progress in Aerospace

Sciences 34 (1–2) (1998) 45–106.

[9] R. Westley, J. Woolley, Flow and sound visualization of an axisymmetric chocked jet (24 in schlieren), Film 20,

National Research Council of Canada, National Aeronautical Establishment, YC. NRC, ME, May 1969.

[10] J. Panda, An experimental investigation of screech noise generation, AIAA Paper 96-1718, Second AIAA/CEAS

Aeroacoustics Conference, State College, PA, USA, May 1996.

[11] J. Panda, Shock oscillation in underexpanded screeching jets, Journal of Fluid Mechanics 963 (1998) 173–198.

[12] D. Pack, On the formation of shock waves in supersonic jets (two-dimensional flow), The Quarterly Journal of

Mechanics and Applied Mathematics 1 (1948) 451–469.

ARTICLE IN PRESS

A. Rona, X. Zhang / Journal of Sound and Vibration 270 (2004) 297–321320



[13] J. Hay, E. Rose, In-flight shock cell noise, Journal of Sound and Vibration 11 (4) (1970) 411–420.

[14] C. Tam, F. Hu, On the three families of instability waves of high-speed jets, Journal of Fluid Mechanics 201 (1989)

447–483.

[15] G. Lilley, X. Zhang, A. Rona, Progress in computational aeroacoustics in predicting the noise radiated from

turbulent flows, International Journal of Acoustics and Vibration 2 (1) (1997) 3–10.

[16] D. Wilcox, Turbulence Modeling for CFD, Griffin Printing, Glendale, CA, USA, 1993.

[17] G. Lilley, On the noise from air jets, Report 20376, Aeronautical Research Council, UK, September 1958.

[18] F. Menter, Improved two-equation k–o turbulence models for aerodynamic flows, Technical Memorandum

103975, NASA, 1992.

[19] X. Zhang, J. Edwards, A computational analysis of supersonic jet instability wave interaction, AIAA Paper

94-2194, 25th AIAA Fluid Dynamics Conference, Colorado Springs, CO, USA, June 1994.

[20] P. Roe, Approximate Riemman solvers, parameter vectors and difference schemes, Journal of Computational

Physics 43 (2) (1981) 357–372.

[21] P. Roe, Characteristics-based schemes for the Euler equations, Annual Review of Fluid Mechanics 18 (1986)

337–365.

[22] J. Quirk, An Adaptive Grid Algorithm for Computational Shock Hydrodynamics, Ph.D. Thesis, Cranfield

Institute of Technology, Cranfield, UK, January 1991.

[23] M. Manna, A Three Dimensional High Resolution Compressible Flow Solver, Ph.D. Thesis, Universit!e

Catholique de Louvain, Belgium, October 1992.

[24] A. Rona, Aerodynamic and Aeroacoustic Estimations of Oscillatory Supersonic Flows, Ph.D. Thesis, University

of Southampton, Southampton, UK, June 1997.

[25] C. Tam, Jet noise generated by large-scale coherent motion, in: H. Hubbard (Ed.), Aeroacoustics of Flight Vehicles:

Theory and Practice, Reference Publication 1258, Vol. 1, NASA, Acoustical Society of America, Woodbury, NY,

1995, pp. 311–390.

[26] M. Harper-Bourne, M. Fisher, The noise from shock waves in supersonic jets, in: Noise Mechanisms, AGARD

Conference Proceedings 131, Brussels, Belgium, Advisory Group for Aeronautical Research and Development,

1973, pp. 11-1–11-13.

[27] T. Colonuis, S. Lele, P. Moin, Sound generation in a mixing layer, Journal Fluid Mechanics 330 (1997) 375–409.

[28] J. Seiner, M. Ponton, Aeroacoustic data for high Reynolds number supersonic axisymmetric jets, Technical

Memorandum 86296, NASA, January 1985.

[29] J. Seiner, J. Manning, M. Ponton, The preferred spatial mode of instability for a Mach 2 jet, AIAA Paper 86-1942,

July 1986.

[30] M. Gharib, A. Roshko, The effect of flow oscillations on cavity drag, Journal of Fluid Mechanics 177 (1987) 44–50.

[31] H. Shen, C. Tam, Numerical simulation of the generation of axisymmetric mode jet screech tones, AIAA

Paper 98-0283, 36th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, January 1998.

[32] T. Manning, S. Lele, Numerical simulations of shock–vortex interactions in supersonic jet screech, AIAA Paper

98-0282, 36th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, January 1998.

[33] A. Michalke, Survey on jet instability theory, Progress in Aerospace Sciences 21 (1984) 159–199.

[34] B. Mitchell, S. Lele, P. Moin, Direct computation of sound generated by subsonic and supersonic axisymmetric

jets, Report TF-66, Thermosciences Division, Department of Mechanical Engineering, Stanford University, CA,

USA, November 1995.

ARTICLE IN PRESS

A. Rona, X. Zhang / Journal of Sound and Vibration 270 (2004) 297–321 321


	Time accurate numerical study of turbulent supersonic jets
	Introduction
	Research motivation
	Background

	Flow conditions
	Numerical method
	Governing equations
	Turbulence model
	Numerical model

	Results and discussion
	Fully expanded jet
	Over-expanded jet: mean flow
	Over-expanded jet: unsteady aerodynamics
	Over-expanded jet: pressure fluctuations

	Concluding remarks
	Acknowledgements
	Nomenclature
	References


